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The Three Viewpoints of the Recommendation problem
—— Matrix 
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Project users and items into a common 
latent space, and then use the dot product 
of latent factors to estimate the rating.
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The Three Viewpoints of the Recommendation problem
—— Graph 
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The Three Viewpoints of the Recommendation problem
—— Sequence 
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All roads lead to “Matching”
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Matching is a much broader topic in the domain of Information Retrieval.

Matching can be viewed as a special type of classification problems which 

aims to predict the most relevant items/documents/answers.
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Is real-world recommendation a prediction task?
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Reinforcement Learning
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UCL Course on RL by David Silver

RL is a general-purpose framework for decision-making.

• An agent selects actions

• Its actions influence its future observations

• Success is measured by a scalar reward signal

Goal: select actions to maximize future rewards

DL + RL = Artificial General Intelligence !

—— David Silver (DeepMind)

Reinforcement Learning
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Supervised Learning vs. Reinforcement Learning

Mask R-CNN

Open NMT

Mastering the game of Go with deep neural networks and tree search

Mastering the game of Go without human knowledge

Human-level control through deep reinforcement learning

Alphastar: Mastering the real-time strategy game starcraft ii

Openai five

Superhuman AI for heads-up no-limit poker: 

Libratus beats top professionals

2015

2016

2017

2019

2018
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More than Games!

Deep Reinforcement Learning by Yuxi LI
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Challenges of Real-World Reinforcement Learning

1. Training off-line from the fixed logs of an external behavior policy.

2. Learning on the real system from limited samples.

3. High-dimensional continuous state and action spaces.

4. Safety constraints that should never or at least rarely be violated. 

5. Tasks that may be partially observable, alternatively viewed as non-stationary or 

stochastic.

6. Reward functions that are unspecified, multi-objective, or risk-sensitive.

7. System operators who desire explainable policies and actions.

8. Inference that must happen in real-time at the control frequency of the system.

9. Large and/or unknown delays in the system actuators, sensors, or rewards.
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Can We Copy The Success of DL by

Offline (Data-driven) RL?
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Offline Reinforcement Learning
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Reinforcement Learning with Large Real-world Dataset

[1] Dasari, Ebert, Tian, Nair, Bucher, Schmeckpeper, .. Finn. RoboNet: Large-Scale Multi-Robot Learning.

[2] Yu, Xian, Chen, Liu, Liao, Madhavan, Darrell. BDD100K: A Large-scale Diverse Driving Video Database. 

RoboNet

Robotics

Recommender Systems

Autonomous Driving

An Optimistic Perspective on Offline Reinforcement Learning
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But .. Offline RL is Challenging!

An Optimistic Perspective on Offline Reinforcement Learning

Distribution mismatch Online vs. Offline
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What Makes Offline Reinforcement Learning Difficult?

Distributional shift:

while our function approximator (policy, value function, or model) might be 

trained under one distribution, it will be evaluated on a different distribution, due 

both to the change in visited states for the new policy and, more subtly, by the 

act of maximizing the expected return.

a short theoretical illustration of how harmful distributional shift can be on the performance of policies
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But .. Offline RL is Challenging!

An Optimistic Perspective on Offline Reinforcement Learning

No New Corrective Feedback
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Offline Reinforcement Learning has a great
potential but we should be careful when we 
deploy it in real-world production systems.
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All trained by discrete BCQ, an offline RL algorithm.

Pong Enduro Breakout
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