From Predict to Control From RL to Offline RL

Zhi-Hong Deng 邓智鸿 2020.11.3

Outline

1.Recommender Systems

2.Reinforcement Learning

3.Offline Reinforcement Learning

Recommender Systems

The Three Viewpoints of the Recommendation problem — Matrix

\approx User

The Three Viewpoints of the Recommendation problem —— Graph

Social Graph (Network) Interaction Graph

Graph Knowledge Graph Ontology

The Three Viewpoints of the Recommendation problem — Sequence

Session-based Recommendation Sequential Recommendation

Next-basket Recommendation

The Three Viewpoints of the Recommendation problem — Sequence

Session-based Recommendation Sequential Recommendation

Next-basket Recommendation

All roads lead to "Matching"

Initial Representation Representation User

- Matching is a much broader topic in the domain of Information Retrieval.
- aims to predict the most relevant items/documents/answers.

Matching can be viewed as a special type of classification problems which

Is real-world recommendation a prediction task?

Reinforcement Learning

Reinforcement Learning

DL + RL = Artificial General Intelligence !

RL is a general-purpose framework for decision-making.

- An agent selects actions
- Its actions influence its future observations
- Success is measured by a scalar reward signal
- Goal: select actions to maximize future rewards

UCL Course on RL by David Silver

— David Silver (DeepMind)

Supervised Learning vs. Reinforcement Learning

2015

2016

2017

Mask R-CNN

Open NMT

Human-level control through deep reinforcement learning

Mastering the game of Go with deep neural networks and tree search

Mastering the game of Go without human knowledge

Superhuman AI for heads-up no-limit poker: Libratus beats top professionals

Openai five

Alphastar: Mastering the real-time strategy game starcraft ii

More than Games!

Deep Reinforcement Learning by Yuxi LI

Challenges of Real-World Reinforcement Learning

- 1. Training off-line from the fixed logs of an external behavior policy.
- 2. Learning on the real system from limited samples.
- 3. High-dimensional continuous state and action spaces.
- 4. Safety constraints that should never or at least rarely be violated.
- 5. Tasks that may be partially observable, alternatively viewed as non-stationary or stochastic.
- 6. Reward functions that are unspecified, multi-objective, or risk-sensitive.
- 7. System operators who desire explainable policies and actions.
- 8. Inference that must happen in real-time at the control frequency of the system.
- 9. Large and/or unknown delays in the system actuators, sensors, or rewards.

Can We Copy The Success of DL by Offline (Data-driven) RL?

Offline Reinforcement Learning

Reinforcement Learning with Large Real-world Dataset

Robotics

Recommender Systems

[1] Dasari, Ebert, Tian, Nair, Bucher, Schmeckpeper, .. Finn. RoboNet: Large-Scale Multi-Robot Learning. [2] Yu, Xian, Chen, Liu, Liao, Madhavan, Darrell. BDD100K: A Large-scale Diverse Driving Video Database.

An Optimistic Perspective on Offline Reinforcement Learning

Reinforcement Learning with Large Real-world Dataset

[1] Dasari, Ebert, Tian, Nair, Bucher, Schmeckpeper, .. Finn. RoboNet: Large-Scale Multi-Robot Learning.
[2] Yu, Xian, Chen, Liu, Liao, Madhavan, Darrell. BDD100K: A Large-scale Diverse Driving Video Database.

An Optimistic Perspective on Offline Reinforcement Learning

UJURI Dala

omous Driving

BDD100K

Logged Data Everywhere

But .. Offline RL is Challenging!

Distribution mismatch

An Optimistic Perspective on Offline Reinforcement Learning

Reinforcement Learning with Online Interactions

Offline Reinforcement Learning

Online vs. Offline

What Makes Offline Reinforcement Learning Difficult?

Distributional shift

while our function approximator (policy, value function, or model) might be trained under one distribution, it will be evaluated on a different distribution, due both to the change in visited states for the new policy and, more subtly, by the act of maximizing the expected return.

The expectation of the number of mistakes $\ell(\pi) = \mathbb{E}_{p_{\pi}}$

best possible bound on the expected error of the learned policy.

a short theoretical illustration of how harmful distributional shift can be on the performance of policies

$$_{(\tau)} \left[\sum_{t=0}^{H} \delta(\mathbf{a}_t \neq \mathbf{a}_t^{\star}) \right].$$

Theorem 2.1 (Behavioral cloning error bound). If $\pi(a|s)$ is trained via empirical risk minimization on $s \sim d^{\pi_{\beta}}(s)$ and optimal labels a^* , and attains generalization error ϵ on $s \sim d^{\pi_{\beta}}(s)$, then $\ell(\pi) \leq C + H^2 \epsilon$ is the best possible bound on the expected error of the learned policy. offline

Theorem 2.2 (DAgger error bound). If $\pi(a|s)$ is trained via empirical risk minimization on $s \sim d^{\pi}(s)$ and optimal labels a^* , and attains generalization error ϵ on $s \sim d^{\pi}(s)$, then $\ell(\pi) \leq C + H \epsilon$ is the online

But .. Offline RL is Challenging!

No New Corrective Feedback

An Optimistic Perspective on Offline Reinforcement Learning

Offline Reinforcement Learning has a great potential but we should be careful when we deploy it in real-world production systems.

Pong

Enduro

Breakout

All trained by discrete BCQ, an offline RL algorithm.

Thank you

